Gain estimation for an AC power line data network transmitter using a neural-fuzzy network and an improved genetic algorithm
نویسندگان
چکیده
Abstracb This paper presents the estimation of the transmission gain for an AC power line data network in an intelligent home. The estimated gain ensures the transmission reliability and efficiency. A neural-fuzzy network with rule switches is proposed to perform the estimation. An improved genetic algorithm is proposed to tune the parameters and the rules of the proposed neural-fuzzy network. By turning on or off the rule switches, an optimal rule base can be obtained. An application example will be given.
منابع مشابه
Application of an Improved Neural Network Using Cuckoo Search Algorithm in Short-Term Electricity Price Forecasting under Competitive Power Markets
Accurate and effective electricity price forecasting is critical to market participants in order to make an appropriate risk management in competitive electricity markets. Market participants rely on price forecasts to decide on their bidding strategies, allocate assets and plan facility investments. However, due to its time variant behavior and non-linear and non-stationary nature, electricity...
متن کاملEstimation of groundwater level using a hybrid genetic algorithm-neural network
In this paper, we present an application of evolved neural networks using a real coded genetic algorithm for simulations of monthly groundwater levels in a coastal aquifer located in the Shabestar Plain, Iran. After initializing the model with groundwater elevations observed at a given time, the developed hybrid genetic algorithm-back propagation (GA-BP) should be able to reproduce groundwater ...
متن کاملThe Predictability Power of Neural Network and Genetic Algorithm from Fiems’ Financial crisis
Organizations expose to financial risk that can lead to bankruptcy and loss of business is increased nowadays. This may leads to discontinuity in operations, increased legal fees, administrative costs and other indirect costs. Accordingly, the purpose of this study was to predict the financial crisis of Tehran Stock Exchange using neural network and genetic algorithm. This research is descripti...
متن کاملForecasting Stock Market Using Wavelet Transforms and Neural Networks: An integrated system based on Fuzzy Genetic algorithm (Case study of price index of Tehran Stock Exchange)
The jamor purpose of the present research is to predict the total stock market index of Tehran Stock Exchange, using a combined method of Wavelet transforms, Fuzzy genetics, and neural network in order to predict the active participations of finance market as well as macro decision makers.To do so, first the prediction was made by neural network, then a series of price index was decomposed by w...
متن کاملA Solution to the Problem of Extrapolation in Car Following Modeling Using an online fuzzy Neural Network
Car following process is time-varying in essence, due to the involvement of human actions. This paper develops an adaptive technique for car following modeling in a traffic flow. The proposed technique includes an online fuzzy neural network (OFNN) which is able to adapt its rule-consequent parameters to the time-varying processes. The proposed OFNN is first trained by an growing binary tree le...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003